
Performance Analysis of Multilevel Parallel Applications on Shared Memory

Architectures

Gabriele Jost*, Haoqiang Jin

NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 USA

{gj ost, hj in} @has .nasa. gov

Jesus Labarta, Judit Gimenez, Jordi Caubet

European Center of Parallelism of Barcelona-Technical University of Catalonia (CEPBA-UPC)
cr. Jordi Girona 1-3, Modul D6,08034 - Barcelona, Spain

{jesus,j udit,jordics }@ cepba.upc.es

Abstract

In this paper we describe how to apply powerful performance analysis techniques to under-

stand the behavior of multilevel parallel applications. We use the Paraver/OMPltrace

performance analysis system for our study. This system consists of two major components: The

OMPItrace dynamic instrumentation mechanism, which allows the tracing of processes and

threads and the Paraver graphical user interface for inspection and analyses of the generated

traces. We describe how to use the system to conduct a detailed comparative study of a bench-

mark code implemented in five different programming paradigms applicable for shared memory

1 Introduction

With the advent of parallel hardware and software technologies users are often faced with the

challenge to choose a programming paradigm that is best suited for the underlying computer ar-

chitecture. With the current trend in parallel computer architectures towards clusters of shared

memory symmetric multi-processors parallel programming techniques have evolved that support

parallelism beyond a single level. Multiple levels of parallelism can be achieved by the use of

processes, multithreading, and a mixture of both. Which programming paradigm is the best will

depend on the nature of the given problem, the hardware architecture, and the available software.

When comparing the performance of applications based on different programming paradigms it is

important to understand how the performance is influenced by what aspect of the paradigm. It is

important to identify and quantify the performance metrics of a certain paradigm.

Quantification of performance characteristics can be only be achieved by a detailed analysis.

The Paraver [14] visualization and analysis tool was developed with the goal to provide the user

with means to obtain a qualitative global perception of the application behavior as well as a de-

tailed quantitative analysis of program performance. Paraver allows the user to visually inspect
trace files that have been collected during program execution. Traces are composed of state tran-

sitions, events, and communications, each with an associated time stamp. These three elements

allow generating traces that capture the behavior of a programs execution. For our study we used

the OMPTtrace module, which is optionally available with the Paraver distribution. The OM-

PItrace module allows dynamic instrumentation and tracing of applications with multiple levels

of parallelism.

*The author is an employee of Computer Sciences Corporation

To this day there a very few published results containing detailed performance analysis data

for multilevel parallel program. In our study we compare different implementation of one of the

NAS Parallel Benchmarks [1] employing single and multiple levels of parallelism. We demon-

strate how to conduct a detailed performance analysis to determine the impact of the

programming paradigm on the scalability of the code.
The rest of the paper is structured as follows: In Section 2 we give a brief discussion of parallel

programming paradigms applicable to shared memory architectures and identify their perform-
ance metrics. In Section 3 we explain how the Paraver/OMPItrace performance analysis system

supports the different levels of parallelism. In Section 4 we perform a comparative case study us-

ing different implementations of a CFD benchmark kernel. In Section 5 we briefly discuss related

work and summarize our conclusions in Section 6.

2 Parallel Programming Paradigms for Shared Memory Architectures

Most shared memory architectures provide hardware support for a cache coherent globally

shared address space. Process communication is usually supported by software but leverages the

hardware support for the shared address space. This provides support for various programming

paradigms.

2.1 Process Level Parallelism

In our study we assume that each process has its own local memory. A well understood pro-

gramming paradigm for process level parallelism is message passing. The computational work
and the associated data are distributed among a number of processes. If a process needs to access

data located in the memory of another process, it has to be communicated via the exchange of

messages. MPI (Message Passing Interface) [10] is a widely accepted standard for writing

message-passing programs.
The Shared Memory Access (SMA) programming paradigm is also based on the concept of

processes with their own local memory, but it separates the communication and synchronization

step. In this programming model, a special memory area is allocated which is accessible to all

processes. Exchange of data is achieved by writing to and reading from the shared memory
buffer. Data transfer between two processes is performed by only one side and does not require a

matching operation by the other process. The correct ordering of memory access has to be im-

posed by the user through explicit synchronization. The MLP library [18], which was developed
at the NASA Ames Research Center, supports this programming paradigm by providing routines

for process generation, shared memory allocation, and process synchronization.

2.2 Thread Level Parallelism

Parallel programming on a shared memory machine can take advantage of the globally shared

address space. Compilers for shared memory architectures usually support multi-threaded execu-

tion of a program. Loop level parallelism can be exploited by using compiler directives such as

those defined in the OpenMP standard [13]. OpenMP provides a fork-and-join execution model

in which a program begins execution as a single process or thread. This thread executes sequen-

tially until a parallelization directive for a parallel region is found. At this time, the thread creates
a team of threads and becomes the master thread of the new team. All threads execute the state-

ments execute the statements until the end of the parallel region. Work-sharing directives are

providedto divide theexecutionof theenclosedcoderegionamongthethreads.All threadsneed
to synchronizeat the end of parallel constructs,they alsomay synchronizeat the end of each
work-sharingconstructor at specificpointsenclosedby the parallelconstruct.Data transferbe-
tweenthreadsis doneby directmemoryreferences.In a nestof loops,parallelizationdirectives
canbe appliedto severalof the loop levels. This allows for the possibility to have groupsof
threadsworking on different chunksof data.In our studywe considernestedOpenMPparallel-
ism as mulitlevel parallelism,since groupingthe threadsimposesa hierarchyamongstthem.
Eventhoughthenestingof parallelizationdirectivesis permittedby theOpenMPstandard,it is at
this pointnot supportedby manycompilers.TheNanosCompiler[3] hasbeendevelopedto show
thefeasibilityof exploitingnestedparallelismin OpenMPandis usedin ourstudy.

2.3Hybrid Parallelism
Processlevelparallelismandthreadlevel parallelismcanbecombinedinto a hybridparadigm

to exploit parallelismbeyonda singlelevel.The mainthrustof thehybrid parallelparadigmis to
combineprocesslevel coarsegrainparallelism,which is obtainedfor examplein domaindecom-
positionandfine grainparallelismon a loop level which is achievedby compilerdirectives.The
hybridMPI/OpenMPapproacheshasbeenusedin variousapplications([8], [9]).

The SMA programmingmodelalsoallowsa combinationof processesandthreads.We refer
to the hybrid SMA/OpenMPprogrammingparadigmasMLP (Multi-Level-Parallelism).MLP
hasbeensuccessfullyappliedat theNASA AmesResearchCenter[18],

3 Support for Performance Analysis of Multilevel Parallel Programs

A trace-based visualization and analysis environment consist of two basic components: the

tracing package and the visualization tool. The power of the system depends on the individual

capabilities of each component as well as on the proper interoperation between them. The tracing

tool must be able to capture events that accurately characterize the behavior of the program. The

analysis tool has to post-process the trace information in order to display useful views and statis-

tics.

3.1 The OMPItrace Module

In our study we used OMPItrace [12] to instrument all the programming paradigms targeted by

our analysis. The basic OMPItrace mechanism traces OpenMP, MPI and hybrid MPI/OpenMP

binaries without requiring source code modification or linking to special libraries.

The SGI version of OMPItrace uses DITools [16] as the dynamic instrumentation mechanism.

Calls to the dynamically linked OpenMP and MPI run-time libraries are intercepted by properly

modifying the Global Offset Table (GOT) at load time. Events are emitted into the trace on entry

and exit of MPI calls along with the information of message size and source/destination. Entry

and exit of OpenMP parallel regions and work-sharing constructs are also tagged. In this pro-

gramming model, the code regions that correspond to the body of the parallel regions/loops are

outlined by the compiler and encapsulated as parallel routines. OMPItrace intercepts entry and

exit to these routines as well as the run time calls that assign work when called by these outlined

routines. Besides tracing events, OMPItrace can read two hardware counters and emit their val-

ues to the trace. Reading the hardware counters poses a certain overhead, as it requires a system

call. If hardware counters are not read, the overhead of the instrumentation at one probe is about

1 microsecond.Readingthehardwarecountersincreasestheoverheadby about20-23microsec-
onds.

The Paraverobject model is structuredin a three level hierarchy: Application, Task, and
Thread.Eachrecordis taggedwith thesethreeidentifiers.This approachallowsParaverto sup-
port nestedparallelprogrammingmodels

For this study,OMPItracehadto be extendedto supportprocessgenerationandsynchroniza-
tion mechanismsdifferent form thoseoriginally usedfor MPI and OpenMP.To supportSMA
andMLP it wasnecessaryto addextensionsto dynamicallyinterceptcallsto theUNIX fork rou-
tine. We also addedsupportfor the staterecordsthat indicateMLP synchronizationprimitives
andprovidedaninstrumentedversionof theMLP library to allow tracing.

3.2 Trace File Views

The traces collected during the execution of a program contain a wealth of information, which

as a whole is overwhelming. We need to be able to screen out information to gain visibility of a

critical subset of the data. In order to understand the impact of various aspects of hardware, oper-

ating system (OS), and program structure on the performance, it is also necessary to correlate

extracted subsets of information with each other. This can be done through timeline graphical

displays or by histograms and statistics. Paraver provides great the flexibility in designing dis-

plays hat are suitable for a particular problem. The timelines can be displayed at the level of
individual threads but also at the level of processes. In he latter case, the values for each thread

are combined to produce a value for the process. A user can specify through the Paraver GUI

how to compute a given performance index from the records in the trace and then save it as a

configuration file. These configuration files can then be used by to immediately pop up a view of

the selected performance index. For example, it is possible to show when MPI calls are made,

when parallel functions are being executed by each thread or what the MIPS or cache miss rates

are for a given time.

THREAD i.l.i

THREAD i.i÷2

THREAD i°i.3

THREAD i.i+4

THREAD i.2.1

THREAD 1.2.2

THREAD 1.2_3

THREAD 1.2o4

2i8i74o52 us 3352256.53 us 3486338.54 us 3620420.55 us 3754502.56 us

Figure 1: Timeline of Parallel Functions

4

Figure 1showstheparallel functionsview of anMLP. Thedifferent colorsindicatetheparal-
lel regionswith light bluerepresentingtimethat is spentoutsideof parallelregions.

Anotherinterestingview showswhetherathreadis doingusefulcomputationor not. To obtain
sucha view we masktime in processsynchronizationprimitives, communicationroutines,time
in OpenMPidle loops,barriersbetweensuccessiveOpenMPwork sharingconstructsandfinally
the synchronizationwaits implementedby the programmerthrough busy wait loops and the
FLUSH directive.Onceidentified timeintervalswherereally useful computationis done,views
showingMLPSor durationof thoseregionscanbederived.

Themain quantitativeanalysismodulein Paraverbuilds a table wherefor eachthreadprofile
dataor histogramsareshown.Typical statisticssuchasaveragevalue,maximumor standardde-
viationcanbeappliedto a user-selectedregionof anyof the timeline views previouslydefined.
Theresultis averypowerful profiling capability.Examplestatisticsthatcanbereportedaretime
or missratio for eachthreadwithin eachuserfunction or parallel routinebut alsohistogramof
durationof a given MPI call or evencorrelationbetweencachemissesand durationof a given
MPI call. In Figure 2 we show the mappingof the numberof graduatedinstructionsfor each
threadwithin differentparallelfunctions.

.... .%:

Figure 21Analysis of Parallel Functions and Graduated Instructions

4 A Comparative CaseStudy
We used the BT benchmark from the NAS Parallel Benchmarks (NPB) [1] for our comparative

study. The BT benchmark solves three systems of equations resulting from an approximate fac-

torization that decouples the x, y and z dimensions of the 3-dimensional Navier-Stokes equations.

These systems are block tridiagonal consisting of 5x5 blocks. Each spatial dimension is alterna-

tively swept as depicted in Figure 3.
We evaluated three parallelization approaches employing a total five programming models.

We used two pure process level parallel, two hybrid parallel, and one nested OpenMP implemen-

tation of the same benchmark.

init

#
] rhs

±
I i

Iy-s°IVel

Iz-S°IVel

I ,I
I

Figure 3: Structure of the BT

benchmark

4.1 Description of the Different Benchmark Implementations

The MPI implementation of the BT employs a multi-partition scheme [2] in 3-D to achieve

good load balance and coarse-grained communication. In this scheme, processors are mapped
onto sub-blocks of points of the grid in a special way such that the sub-blocks are evenly distrib-

uted along any direction of solution. The blocks are distributed such that for each sweep direction

the processes can start working in parallel. Throughout the sweep in one direction, each processor

starts working on its sub-block and sends partial solutions to the next processor before going into

the next stage. An example for one sweep direction of a 2-D case is illustrated in Figure 4. Com-
munications occur at the sync points as indicated by gray lines in Figure 4. We indicate the

number of the process who owns the data within each square. In the actual implementation sepa-

rate routines are used to form the left-hand side of the block tridiagonal systems before these

systems are solved. A number of five- and six-dimensional work arrays are used to hold interme-

diate results.

sync

3 0 1 2
_ U.TEI_"7"-_I"_T •_ _,,,

//_ 2 3 0 1 I sweep

1 2 3 0 direction

0 1 2 3

Figure 4: The multi-partition scheme in 2-D.

In the SMA implementation we employ the same algorithm, except that communications are

handled by data exchange through the shared memory buffers and proper synchronization primi-

tives.

The OpenMP implementation is based on the version described in [5]. The implementation is

similar to that of the message-passing version, but the large working arrays are significantly re-

duced in size and a couple of the computational intensive loops are fused. The code that we used

in our study contains nested OpenMP directives, which were automatically generated using the

CAPO [6] parallelization tool. It also contains OpenMP extensions for nested parallelism sup-

ported by the NanosCompiler [3] In our study we used the NanosCompiler for the nested

OpenMP since nested OpenMP parallelism was not supported by the commercial SGI compiler.

The automatic generation of nested OpenMP directives using CAPO is described in [7].

The hybrid MPI/OpenMP and MLP implementations are also based on the versions described

in [5], however, the memory requirements are somewhat higher than in the pure OpenMP code,

since we have to provide the workspace for a one dimensional data distribution. The coarse-

grained parallelization was achieved by using the CAPTools [4] parallelization tool to generate a

message-passing version with a one-dimensional domain decomposition in the z-dimension. For

the MLP implementation communications are handled by usage of the shared memory buffer.

The OpenMP directives we inserted by using CAPO on the y-dimension. Since the data is dis-

tributed in the z-dimension, the call to z_solve requires communication within a parallel

region as depicted in Figure 5. The routine y_solve contains data dependences on the y-

dimension, but can be parallelized by pipelined thread execution.

In summary, we use three different parallel algorithms for the BT benchmark. SMA and MPI

use the same algorithm, but different means of data transfer. MLP and MPI/OMP use the same

algorithm, but different means of data transfer. The nested OpenMP implementation uses a third

algorithm.

/

:$omo parallel

do j=l_ny

mall receive

do k=k_iow, k_high

do i=l, nx

rhs (i, j,k) =

...rhs (i, j,k-l)

enddo

enddo

call send

enddo

Figure 5: Code fragment of hy-

brid routine z-solve

4.2 Performance Indices

We will use the following abbreviations for the various programming models under considera-

tion:

• MPh Process level parallelism employing message passing based on MPI [10].

• SMA: Process level parallelism employing shared memory buffers for data transfer.

• OpenMP: Thread level parallelism based on OpenMP [13]

• MLP: Hybrid process and thread level parallelism employing SMA and OpenMP.

• MPI/OMP: Hybrid process and thread level parallelism employing MPI and OpenMP.

In order to compare and quantify the performance differences, we consider the following metrics,

not all of which are applicable to all programming models. By useful instructions we mean in-

structions not spent on thread management, process synchronization, and communication.
• MEM: Number of L2 cache misses while executing useful instructions reported in mil-

lions.

• INST: Number of useful instructions reported in billions.

• COMM: Percentage of time spent in MPI routines for point-to-point or global communi-

cation

• SYNC: Percentage of time spent in process synchronization. This includes the time in

MPI barriers and wait operations and time spent in MLP synchronization routines.

• THREADM: Percentage of time spend in thread management, i.e. thread fork and join,

OpenMP thread synchronization, user introduced synchronization for pipelined thread

execution, thread idle time.

8

Thesesimplemetricswill not give adetailedexplanationof aparticularperformanceproblem.
They will, however,give hintsonwherefurtheranalysisis required.Quantifyingandcomparing
thesecharacteristicsrequiredetailedmeasurementsof systeminfluenceandhardwarecounters.

4.3Comparing the Performance of Different Paradigms

We ran the various implementations of BT on an SGI Origin 3000. We used the SGI compiler

for all implementations. For the nested OpenMP code we used the NanosCompiler [3], which is

based on the SGI compiler, but supports nested OpenMP parallelism. All our timings where run

in batch mode with the appropriate number of CPUs. In Figure 6 we show the execution times for

various combinations of processes and threads for our hybrid implementations and for different

choices of thread groupings in the nested OpenMP implementation. For the hybrid codes we in-

dicate the nesting level as NPxNT, where NP is the number of processes and NT is the number of

threads. For the nested OpenMP code we indicate the nesting level as NGxNT, where NG is the

number of groups of threads and NT is the number of threads within one group.
The speedup from 1 to 144 CPUs for all imple-

BT Class A on 100 CPUs

i 30

25

20

15

10

5

0

MLP MPI/Of_enMP Nest ed OpenMP

Programming Paradigm

Figure 6: Timings for different nesting
levels.

mentations is shown in Figure 7. For hybrid codes

and the nested OpenMP code we report the best

times over various nesting levels. We calculate the

speedup by the ratio of the execution time on N
CPUs and the fastest time achieved on 1 CPU. The

fastest single CPU run was achieved with the

OpenMP code. Therefore we report a speedup of

the MPI implementation on 1 CPU as 0.5, indicat-

ing that the MPI code takes twice as long as the

OpenMP code on 1 CPU. For the multilevel paral-

lel implementations we tested various nesting

levels and report the speedup for the best configu-

ration. As can be seen, the scalability of the

different implementations varies widely. The process level parallel implementations outperform

the hybrid and OpenMP implementations. To understand why this is the case, we will conduct a

detailed performance analysis using Paraver and OMPItrace.

9

BT Class A Speedup

Q,.

g

140

120

100

80

60

40

20

0

1 4 16 49 64 81 100 121 144

Number of CPUs

__MPI

SMA

MLP

MPI/OpenMP

Nested OpenMP

Figure 7: Speedup for different paradigms

For our analysis we obtained traces for all implementations. The SGI Origin allows tracing two

hardware counters at a time. We traced graduated instructions and L2 cache misses. We collected

the traces without and with hardware counters Tracing without hardware counters has minimal

probe perturbation and should report detailed patterns of the temporal behavior of the application.

Tracing with hardware counters introduces a bit more of overhead but provides extra detailed in-

formation. Based on the traces we can display relevant performance views and based on them we

can compute some statistics. Statistics that do not depend on the hardware counters are computed

on the trace without counters to reduce possible instrumentation overheads. We used the analysis

module to calculate and average useful instruction and L2 miss rate.

We chose a run with 100 CPUs and the class A problem size for our investigations In Table 1

we summarize the statistics for the different benchmark implementations. The values were ob-

tained by applying the analysis module. We applied the Paraver analysis module to the state
view in order to determine the statistics COMM, SYNC, and THREADM. The main performance

impact comes from time spent outside of useful calculations.

COMM

MEM

INST

SYNC

THREADM

MPI

14%

.45M

1.2B

SMA

N/A

0.56M

1.39B

MLP

N/A

3.78M

1.55B

MPI/OMP

7%

5.12M

1.38 B

OMP

N/A

1.01 M

1.27 B

25% 12% 5.5% 70% N/A

N/A N/A 65% 21% 56%

Table 1: Performance metrics for a 100 CPU run

As a first step, we want to determine why the SMA code scales better than the MPI code, in

spite of the fact that the same algorithm is being used. As can be seen from Table i SMA spends

10

lessamountof timein communicationand synchronizationcomparedto MPI. In Table 2 we re-
port the averageduration per call for the four main time consumingroutines.The timings
correspondto thecombinationwith the bestperformance,employing25 processesand4 threads
each.

x_solve y solve z_solve rhs
MPI 13.844 13.189 13.877 19.240

SMA 10.315 10.663 11.086 7.705

Table 2: User function timings (in ms) inclusive MPI and MLP calls

A view of the trace that exposes relevant information regarding the actual computations in the

application shows the user function being executed but taking out all the time inside MPI calls.

These timings are reported in Table 3.

x solve y solve z solve rhs
MPI 9.715 10.098 10.723 4.343

SMA 9.808 10.123 11.003 7.024

Table 3: User function timings (in ms) exclusive MPI and MLP calls

Routine rhs is communication bound as can be inferred from the important difference in dura-

tion of user mode duration. The routine performs the exchange of boundary data before each

sweep. Each process performs a series of MPI_Isend and MPZ_Zrecv followed by an
MPI Waitall. In Figure Figure we show the timelines of MPI calls for a 100 process run. A

striking effect is that the long time in MPI is not just in the MpI _waitall. The view of the MPI

routines exposes some very long calls to MPZ_Isend and IPI Irecv. They correspond to

marked dense areas in Figure 8. This shows that even if one may think that the use of non-

blocking MPI routines decouples communication and synchronization it does not seem to be to-

tally true. The duration of a given call seems to depend on whether the matching call has been

posted. In case of many communication requests there is the possibility of contentions in the in-
ternals of the MPI library. The result is that a process posting several consecutive calls may be

delayed in one of them, thus delaying the posting of successive calls. The effect propagates

through the process dependence chain of the application in very intricate ways.
:_-_ _,__,_*_ The SMA implementation does not suf-

fer from this effect. Data transfer takes

place within the use code itself, by read-

ing from and writing to the shared

memory buffer. This increases the com-

putation time somewhat, but yields in

general better scalability.

Now we can go on to address the

Figure 8: MPI calls in BT MPI on 100 Proc- question of what limits the scalability of
the multilevel parallel codes. In order to

esses
answer this question, we apply the view

of useful computations described in Sec-

tion 3. Based on this view it is possible to obtain the percentage of time spent in useful instruc-

11

Figure 9: Flow of Useful Computations in BT MLP.

tions within each user routine. As an example we will demonstrate a detailed analysis of the MLP

code and then summarize our findings for the other multilevel implementations.

For BT MLP we computed that only 12% of the time within routine rhs is spent in useful

computations. For routine x_solve it is 46%, for y_solve it is 31% and for z_solve it is

14%. In Figure 9 we show the view of useful computations for an MLP run on 10 processes with
10 threads each. This is not the combination that scales best, but it is best suited to point out the

performance issues. Dark blue represents time spent in useful instructions and light blue indicates

none useful time.

The initial part in Figure 9 represents parallel regions inside routine rhs. A detailed analysis

of the time behavior shows that parallel computations tend to get blocked for periods of time that

happen to be in the order of 10ms or multiples of that. A close look at the view of instructions

executed by the threads in those intervals exposes the fact that a very low number of instructions

has been executed by at least one thread. We interpret this as the thread having been preempted.

Until it regains a CPU, other threads get blocked at the barriers between OpenMP work sharing

constructs. These barriers are required by the OpenMP standard and not necessary for the cor-

rectness of the program's execution.
The denser regions of useful computations correspond to the single parallel region in

xsolve. This is the second marked area in Figure 9. Its behavior in terms of duration is fairly

imbalanced and can be attributed to effects like data placement and memory access time.

Routine y_solve has two major parallel regions; the second one containing pipelined thread

execution within one MLP process. The thread pipeline within each process contributes to the

12

overallpoor percentageof usefulcomputationin this routine.Routiney_solve corresponds to

the third marked area in Figure 9.

The last marked area corresponds to the useful computations of routine z_solve. It con-

tains a parallel region where every OpenMP thread uses MLP signal and wait routines to

synchronize with other threads, possibly in other processes. This creates a pipeline from the first

to the last process. A very detailed time analysis shows a second pipeline with opposite direction,

resulting in a V-shaped pattern of useful computation. All of these dependencies between threads

contribute to the very low percentage of useful computation in this routine.

Even though the MPI/OMP implementation employs the same algorithm it does not show the

problem of CPU preemption in routine rhs that we identified in its MLP counterpart. The inter-

action of OpenMP and MPI causes less OS side effects than MLP. However, in this case it is the

MPI library that causes major problems. The MPI calls within the parallel region of routine

z_solve have an extremely low MPIS value. This low value can be explained by the process

being preempted. We have also observed massive migration of threads during the whole run of

the MPI/OMP code. This results in the poor scalability of the MPI/OMP code. For the MLP code

we observed thread migration only during the initial phase of program execution.

We conclude that the fine grain parallelism introduced in the hybrid parallelization leads to in-

teractions between OS activities, such as system interrupts, and the program synchronization

operations. The impact of these interactions on performance increases rapidly with the number of

processors. The blocking of processes maybe be caused by OS interrupts or context switches, but

may also be done by the OpenMP or MPI library in order to support single and multi-user mode

on the system. The behavior is very much dependent on the. implementation of the run time li-

braries for parallel execution.

The OpenMP implementation has the best performance for a single CPU run and has the low-

est memory requirements. The implementation does not use pipelined thread execution but rather

places the directives on the first dimension in some of the loops. The outer loop of the Class A

BT benchmark has 62 iterations. Clearly, single OpenMP parallelization will not scale beyond 62

threads. Nesting of OpenMP directives allows distributing the work in two dimensions thereby

providing work for more threads. A view of the useful computations of the nested OpenMP code

for 100 CPUs is shown in Figure 10. The view corresponds to best performing nesting level em-

ploying 25 groups of 4 threads. For this combination we calculated an average of 44% of time

spent in useful computations per iteration. All other combinations yielded a lower percentage of

useful time. The non-useful time is mostly spent in idle time, not so much in synchronization and

fork/join operations. The NanosCompiler provides its own thread library, which handles thread

synchronization and scheduling very efficiently. The thread idle time can probably be reduced by

optimizing the distribution of the loop iterations onto the threads. The NanosCompiler provides

clauses to allow detailed mappings of the iteration space onto threads, but in our study we have

only used a simple block distribution.

13

Figure 10: Useful computations for BT OpenMP.

5 Related work

There are many published reports on the comparison of different programming paradigms. We

can only name a few of the. In [19] Taft discusses the performance of a large CFD application.

He compares the scalability of message passing versus MLP. A comparison of message passing

versus shared memory access is given in[15] and [17]. The study uses the SGI SHMEM library

for RMA programming. A discussion of nested OpenMP parallelization is given in [7]. Our cur-
rent work differs from these reports in that we are exploiting powerful performance analysis tools

to obtain detailed information about program behavior.
There are a number of commercial and research performance analysis tools that have been devel-

oped over the years. An example for a commercial product is Vampir [21], which allows tracing

and analysis of OpenMP, MP[, and hybrid MPVOpenMP applications. TAU (Tuning and Analy-

sis Utilities) [20] was developed at the University of Oregon. It is a freely available set of tools

for analyzing the performance of the C,C++, Fortran and Java programs. To our knowledge nei-

ther of these tools supports the MLP programming paradigm.

6 Conclusions

We have used the Paraver/OMPItrace performance analysis system to conduct a detailed per-

formance analysis of five different implementations of the BT NAS Parallel benchmark

employing different programming. We have demonstrated how the performance analysis tool was

used to calculate performance statistics expose patterns in the traces, which help to identify per-

formance problems.

14

A first conclusionof ourstudy is that implementationissuesin the run time library andtheir
interactionwith the OSareveryrelevantto thetotal applicationperformance.Thehybrid imple-
mentationsof our benchmarkwhereparticularly affectedby the interaction of the run time
librariesfor processandthreadparallelization.

We also observedseveralissuesthat are relatedto theprogrammingmodel itself ratherthan
the underlyingrun time library. The strengthof thepurely processbasedmodel lies in the fact
thatthe userhascompletecontroloverprocesssynchronizationanddatadistribution.Whenem-
ployingOpenMPthis it not thecaseanymore.

The scalability of our hybridcodessufferedfrom this fact that processlevel communication
wasdelayeduntil the barriersynchronizationpoints.NestedOpenMPparallelismrequiresthe
nestingof parallel regions,which introducesmanybarriersynchronizationpoints into the outer
region. This raisesthe questionwhether the OpenMPstandardshould be extendedto allow
nestedparallel loopswithout extraparallel regions.Suchanextensionwould also makenested
parallelismmoreefficient.

The secondissue concernsworkload distribution. The well-balanceddistribution of work,
which yieldsthe goodscalabilityfor theSMA implementation,is not supportedby OpenMPdi-
rectives. It is possible to mimic the processlevel parallelization,by assigningspecific loop
boundsto eachthreadmanually.However,this woulddefeattheadvantageof OpenMPwhich is
theeaseof theprogrammingparadigm.We arecurrentlyworkingwith theNanosCompilergroup
to identify suitableOpenMPextensions.

Acknowledgments

This work was supported by NASA contracts NAS 2-14303 and DTTS59-99-D-

00437/A61812D with Computer Sciences Corporation/AMTI, by the Spanish Ministry of Sci-

ence and Technology, by the European Union FEDER program under contract TIC2001-0995-

C02-01, and by the European Center for Parallelism of Barcelona (CEPBA).

References

[1] D. Bailey, J. Barton, T. Lasinski, and H. Simon (Eds.), "The NAS Parallel Benchmarks," NAS

Technical Report RNR-91-O02, NASA Ames Research Center, Moffett Field, CA, 1991.

[2] D. Bailey, T. Harris, W. Saphir, R. Van der Wijngaart, A. Woo, and M. Yarrow, "The NAS
Parallel Benchmarks 2.0," NAS Technical Report NAS-95-020, NASA Ames Research Cen-

ter, Moffett Field, CA, 1995. http://www.nas.nasa.gov/Software/NPB.

[3] M. Gonzalez, E. Ayguade, X. Martorell and J. Labarta, N. Navarro and J. Oliver. "Nano-

sCompiler: Supporting Flexible Multilevel Parallelism in OpenMP", Concurrency: Practice

and Experience. Special issue on OpenMP. vol. 12, no. 12. pp. 1205-1218. October 2000.

[4] C.S. Ierotheou, S.P. Johnson, M. Cross, and P. Leggett, "Computer Aided Parallelisation

Tools (CAPTools) - Conceptual Overview and Performance on the Parallelisation of Struc-

tured Mesh Codes," Parallel Computing, 22 (1996) 163-195. http://captools.__re.ac.uk/

15

[5] H. Jin, M. Frumkin, and J. Yan, "The OpenMPImplementationsof NAS Parallel Bench-
marksandIts Performance",NAS Technical Report NAS-99-01I, 1999.

[6] H. Jin, M. Frumkin and J. Yan. "Automatic Generation of OpenMP Directives and Its Appli-

cation to Computational Fluid Dynamics Codes," in Proceedings of Third International

Symposium on High Performance Computing (ISHPC2000), Tokyo, Japan, October 16-18,

2000.

'_ * " "1

[7] H. Jin, G. Jost J Yan, E Ay_uade, M. Gonzatez, X. Martorell, Automatic Multilevel Para -

lelization UsingOpenM'P",'3 rd European Workshop on OpenMP, Barcelona, Spain, Sep.

2001.

[8] R.D. Loft, S. J. Thomas, J.M. Dennis, "Terascale Spectral Element Dynamical Core for At-

mospheric General Circulation Models", Proceeding of Supercomputing, Denver, Nov. 2001.

[9] D. J. Marvripilis, "Parallel Performance Investigations of an Unstructured Mesh Napier-

Stokes Solver", Technical Report NASA/CR-2000-210088, ICASE No.2000-13, ICASE,

Hampton, Virginia, 2000.

[10] MPI 1.1 Standard, http://www-unix.mcs.anl.gov/mpi/mpich.

[11] MPI-2: Extensions to the MPI Interface, http://www-unix.mcs.anl.gov/mpi/mpich.

[12] OMPItrace User's Guide, https://www.cepba.es.paraverlmanuals.btm

[13] OpenMP Fortran Application Program Interface, http://www.openmp.org/.

[14] Paraver, http://www.cepba, upc.es/tool s.paraver/.

[15] H. Shan, J. Pal Singh, "A comparison of MPI, SHMEM, and Cache-Coherent Shared Address

Space Programming Models on a Tightly-Coupled Multiprocessor", International Journal of

Parallel Programming, Vol. 29, No. 3, 2001.

[16] A. Sen-a, N. Navarro, and T. Corts, "DITools: Application-level support for Dynamic Exten-

sion and Flexible Composition", Proceedings of the USENIX Annual Technical Conference,

June 2000.

[17] H. Shah, J. Pal Singh, "Comparison of Three Programming Models for Adaptive Applications

on the Origin 2000", Journal of Parallel and Distributed Computing 62, 241-266, 2002.

[18] J. Taft, "Achieving 60 GFLOP/s on the production CFD code OVERFLOW-MLP," Parallel

Computing, 27 (2001) 521.

[19] J. Taft, "Performance of the OVERFLOW-MLP Code on the NASA Ames 512 CPU Origin

System", NASA HPCCP/CAS Workshop, NASA Ames Research Center, February 2000.

[20] TAU: Tuning and Analysis Utilities, http://www.cs.uoregon.edu/research/paracomp/tau/.

[21] VAMPIR User's Guide, Pallas GmbH, http://www.pallas.de

16

